Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.464
Filter
1.
Int. j. morphol ; 41(6): 1712-1719, dic. 2023.
Article in English | LILACS | ID: biblio-1528776

ABSTRACT

SUMMARY: This study is to investigate the effect of survivin down-regulation by Egr1-survivin shRNA combined with radiotherapy on the apoptosis and radiosensitivity of esophageal squamous cell carcinoma ECA109 and KYSE150 cells. ECA109 and KYSE150 cells were transfected with Egr1-survivin shRNA, and then treated with radiotherapy. After 24 h, the mRNA and protein levels of Egr1-survivin were detected by qPCR and Western-Blot. Cell cycle and apoptosis were detected by flow cytometry. Western blot also detected levels of cleavaged Caspase 3 and Caspase 9. YM155 was used as a positive control to inhibit survivin expression. The levels of survivin mRNA and protein in ECA109 and KYSE150 cells treated with Egr1-survivin shRNA combined with radiotherapy were significantly lower than those of the blank control group, the empty vector control group, and, the YM155 + radiotherapy group (P<0.05). Meanwhile, after survivin down-regulation, the ratio of G2 to S phase of ECA109 and KYSE150 cells increased significantly, leading to significant G2 and S phase arrest. Additionally, apoptosis of ECA109 and KYSE150 cells increased significantly (P <0.01). Further, protein levels of cleavaged Caspase 3 and Caspase 9 significantly increased in Egr1-survivin shRNA combined with radiotherapy group. Egr1-survivin shRNA combined with radiotherapy can down-regulate survivin expression, which further increases the apoptosis, and enhances the radiosensitivity of ECA109 and KYSE150 cells.


Este estudio tuvo como objetivo investigar el efecto de la regulación negativa de survivina por el shRNA de Egr1-survivina combinado con radioterapia sobre la apoptosis y la radiosensibilidad del carcinoma de células escamosas de esófago Células ECA109 y KYSE150. Las células ECA109 y KYSE150 se transfectaron con shRNA de survivina Egr1 y luego se trataron con radioterapia. Después de 24 h, los niveles de ARNm y proteína de Egr1-survivina se detectaron mediante qPCR y Western-Blot. El ciclo celular y la apoptosis se detectaron mediante citometría de flujo. La transferencia Western también detectó niveles de Caspasa 3 y Caspasa 9 escindidas. Se usó YM155 como control positivo para inhibir la expresión de survivina. Los niveles de ARNm y proteína de survivina en células ECA109 y KYSE150 tratadas con shRNA de survivina Egr1 combinado con radioterapia fueron significativamente más bajos que los del grupo control en blanco, el grupo control de vector vacío y el grupo de radioterapia YM155 + (P <0,05). Mientras tanto, después de la regulación negativa de survivina, la proporción entre las fases G2 y S de las células ECA109 y KYSE150 aumentó significativamente, lo que llevó a una detención significativa de las fases G2 y S. Además, la apoptosis de las células ECA109 y KYSE150 aumentó significativamente (P <0,01). Además, los niveles de proteína de Caspasa 3 y Caspasa 9 escindidas aumentaron significativamente en el shRNA de Egr1- survivina combinado con el grupo de radioterapia. El shRNA de survivina de Egr1 combinado con radioterapia puede regular negativamente la expresión de survivina, lo que aumenta aún más la apoptosis y mejora la radiosensibilidad de las células ECA109 y KYSE150.


Subject(s)
Humans , Esophageal Neoplasms/therapy , Survivin , Esophageal Squamous Cell Carcinoma/therapy , Radiation-Sensitizing Agents , Radiation Tolerance , RNA, Messenger , Esophageal Neoplasms/genetics , Esophageal Neoplasms/radiotherapy , Transfection , Down-Regulation , Blotting, Western , Apoptosis , Combined Modality Therapy , RNA, Small Interfering , Cell Line, Tumor/radiation effects , Early Growth Response Protein 1 , Caspase 3 , Caspase 9 , Real-Time Polymerase Chain Reaction , Flow Cytometry , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/radiotherapy
2.
Int. j. morphol ; 41(6): 1887-1896, dic. 2023. ilus, graf
Article in English | LILACS | ID: biblio-1528807

ABSTRACT

SUMMARY: The therapeutic effect of a granulocyte-colony stimulating factor (G-CSF) biosimilar drug, zarzio, on non-alcoholic fatty liver disease (NAFLD) in a rat model was investigated in this study. Thirty-two rats were randomly divided into four groups. Groups I and II were fed a standard laboratory diet, whereas groups III and IV were fed a high fat diet (HFD) for 14 weeks. After 12 weeks of feeding, groups I and III were administered normal saline, and groups II and IV were intraperitoneally administered zarzio (200 mg/kg/day) for two consecutive weeks. Hematoxylin-eosin (H&E) staining was used to assess hepatic and pancreatic morphology in all groups, oil red O (ORO) staining for lipid accumulation, Masson's staining for fibrosis, and immunohistochemistry assay for hepatic protein expression of insulin receptor substrate 1 (IRS1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumour necrosis factor alpha (TNF-α) and pancreatic caspase-3. The NAFLD rats (group III) developed hepatic steatosis with increased lipid accumulation, perisinusoidal fibrosis, upregulated IRS1, TNF-α (all P<0.05) without a significant increase in Nrf2 protein expression compared with normal control. In comparison, model rats treated with zarzio (group IV) showed significant rejuvenation of the hepatic architecture, reduction of fat accumulation, and fibrosis. This was accompanied by the upregulation of Nrf2, downregulation of IRS1 and TNF-α protein expression (all P<0.05). No correlation was detected between NAFLD and non-alcoholic fatty pancreas disease (NAFPD). However, the pancreatic β-cells in group III showed increased caspase-3 expression, which was decreased (P<0.05) in group IV. In conclusion, zarzio ameliorates NAFLD by improving the antioxidant capacity of liver cells, reducing hepatic IRS1, TNF-α protein expression and pancreatic β-cells apoptosis, suggesting that zarzio could be used as a potential therapy for NAFLD.


En este estudio se investigó el efecto terapéutico de un fármaco biosimilar del factor estimulante de colonias de granulocitos (G-CSF), zarzio, sobre la enfermedaddel hígado graso no alcohólico (NAFLD) en un modelo de rata. Treinta y dos ratas se dividieron aleatoriamente en cuatro grupos. Los grupos I y II fueron alimentados con una dieta estándar de laboratorio, mientras que los grupos III y IV fueron alimentados con una dieta alta en grasas (HFD) durante 14 semanas. Después de 12 semanas de alimentación, a los grupos I y III se les administró solución salina normal, y a los grupos II y IV se les administró zarzio por vía intraperitoneal (200 mg/kg/ día) durante dos semanas consecutivas. Se utilizó tinción de hematoxilina-eosina (H&E) para evaluar la morfología hepática y pancreática en todos los grupos, tinción con rojo aceite O (ORO) para la acumulación de lípidos, tinción de Masson para la fibrosis y ensayo de inmunohistoquímica para la expresión de la proteína hepática del sustrato 1 del receptor de insulina (IRS1), factor nuclear eritroide 2 relacionado con el factor 2 (Nrf2), factor de necrosis tumoral alfa (TNF-α) y caspasa-3 pancreática. Las ratas NAFLD (grupo III) desarrollaron esteatosis hepática con aumento de la acumulación de lípidos, fibrosis perisinusoidal, IRS1 y TNF-α regulados positivamente (todos P <0,05) sin un aumento significativo en la expresión de la proteína Nrf2 en comparación con el control normal. En comparación, las ratas modelo tratadas con zarzio (grupo IV) mostraron un rejuvenecimiento significativo de la arquitectura hepática, una reducción de la acumulación de grasa y fibrosis. Esto estuvo acompañado por la regulación positiva de Nrf2, la regulación negativa de la expresión de la proteína IRS1 y TNF-α (todas P <0,05). No se detectó correlación entre NAFLD y la enfermedad del páncreas graso no alcohólico (NAFPD). Sin embargo, las células β pancreáticas en el grupo III mostraron una mayor expresión de caspasa-3, que disminuyó (P <0,05) en el grupo IV. En conclusión, zarzio mejora la NAFLD al mejorar la capacidad antioxidante de las células hepáticas, reduciendo el IRS1 hepático, la expresión de la proteína TNF-α y la apoptosis de las células β pancreáticas, lo que sugiere que zarzio podría usarse como una terapia potencial para la NAFLD.


Subject(s)
Animals , Male , Rats , Granulocyte Colony-Stimulating Factor/administration & dosage , Biosimilar Pharmaceuticals/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Immunohistochemistry , Tumor Necrosis Factor-alpha/drug effects , Disease Models, Animal , Insulin-Secreting Cells/drug effects , NF-E2-Related Factor 2 , Caspase 3 , Diet, High-Fat/adverse effects
3.
Int. j. morphol ; 41(1): 237-245, feb. 2023. ilus, tab
Article in English | LILACS | ID: biblio-1430520

ABSTRACT

SUMMARY: We aimed to investigate the protective effect of linoleic acid on liver toxicity induced by methotrexate. The study was carried out in partnership with the Department of Anatomy and Department of Medical Pharmacology of Çukurova University Faculty of Medicine, using the laboratory facilities of the Department of Medical Pharmacology. Human hepatocyte cell line (CRL- 11233) cells obtained from the American Type Culture Collection Organization (ATCC) were used. Expressions of apoptotic pathway markers, apoptosis inducing factor (AIF), BAX, BCL 2, GADD 153, 78-kDa glucose-regulated protein (GRP78), and CASPASE-3 were evaluated. All analyzes were examined in four groups (Group 1; control, Group 2; linoleic acid given, Group 3; methotrexate given and Group 4; linoleic acid and methotrexate given). The mean ± standard error values of the obtained results as nanogram / milliliter (ng / ml) are in Group I, Group II, Group III and Group IV, respectively; AIF values, 0.4150 ± 0.1208, 0.3633 ± 0.2389, 1.792 ± 0.3611 and 1.077 ± 0.1646, BAX values, 0.900 ± 0.1864, 1.002 ± 0.2098, 8.352 ± 1.467 and 4.295 ± 1.522, BCL 2 values, 13.93 ± 1.198, 13.92 ± 1.739, 2.938 ± 1.059 and 9.250 ± 1.492, GADD 153, 0.7333 ± 0.1751, 0.7067 ± 0.2115, 1.650 ± 0.2950 and 1.237 ± 0.1805, GRP78, 0.4767 ± 0.1804, 0.5233 ± 0.1590, 2.183 ± 0.2639 and 1.112 ± 0.2693, CASPASE-3 values , 1.127 ± 0.2033, 0.8317 ± 0.3392, 13.50 ± 1.871 and 8.183 ± 1.030. It was determined that linoleic acid has a protective effect on methotrexate-induced liver toxicity.


Nuestro objetivo fue investigar el efecto protector del ácido linoleico sobre la toxicidad hepática inducida por metotrexato. El estudio se llevó a cabo en colaboración con el Departamento de Anatomía y el Departamento de Farmacología Médica de la Facultad de Medicina de la Universidad de Çukurova, utilizando las instalaciones del laboratorio del Departamento de Farmacología Médica. Se usaron células de la línea celular de hepatocitos humanos (CRL-11233) obtenidas de la American Type Culture Collection Organisation (ATCC). Se evaluaron las expresiones de marcadores de vías apoptóticas, factor inductor de apoptosis (AIF), BAX, BCL 2, GADD 153, proteína regulada por glucosa de 78 kDa (GRP78) y CASPASE-3. Todos los análisis se examinaron en cuatro grupos (Grupo 1; control, Grupo 2; se administró ácido linoleico, Grupo 3; se administró metotrexato y Grupo 4; se administró ácido linoleico y metotrexato). Los valores medios ± error estándar de los resultados obtenidos como nanogramo/mililitro (ng/ml) se encuentran en el Grupo I, Grupo II, Grupo III y Grupo IV, respectivamente; Valores de AIF, 0,4150 ± 0,1208, 0,3633 ± 0,2389, 1,792 ± 0,3611 y 1,077 ± 0,1646, valores de Bax, 0,900 ± 0,1864, 1,002 ± 0,2098, 8,352 ± 1,467 y 4,295 ± 1,522, BCL 2 valores, 13,93 ± 1,199. 2,938 ± 1,059 y 9,250 ± 1,492, GADD 153, 0,7333 ± 0,1751, 0,7067 ± 0,2115, 1,650 ± 0,2950 y 1,237 ± 0,1805, Grp78, 0,4767 ± 0,1804, 0,5233 ± 0,1590, 2,183, ± 1,263. 1,127 ± 0,2033, 0,8317 ± 0,3392, 13,50 ± 1,871 y 8,183 ± 1,030. Se determinó que el ácido linoleico tiene un efecto protector sobre la toxicidad hepática inducida por metotrexato.


Subject(s)
Humans , Methotrexate/toxicity , Linoleic Acid/administration & dosage , Chemical and Drug Induced Liver Injury/prevention & control , Enzyme-Linked Immunosorbent Assay , Cells, Cultured , Protective Agents , Hepatocytes/drug effects , Apoptosis Inducing Factor , Caspase 3 , Chemical and Drug Induced Liver Injury/drug therapy , Endoplasmic Reticulum Chaperone BiP , Liver/cytology , Liver/drug effects , Antimetabolites, Antineoplastic/toxicity
4.
Journal of Southern Medical University ; (12): 92-98, 2023.
Article in Chinese | WPRIM | ID: wpr-971499

ABSTRACT

OBJECTIVE@#To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells.@*METHODS@#Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting.@*RESULTS@#The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05).@*CONCLUSIONS@#Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.


Subject(s)
Humans , Prolyl Hydroxylases , Carcinoma, Hepatocellular , Caspase 3 , bcl-2-Associated X Protein , Liver Neoplasms , Signal Transduction , Apoptosis , Adenosine Triphosphate
5.
Chinese journal of integrative medicine ; (12): 127-136, 2023.
Article in English | WPRIM | ID: wpr-971337

ABSTRACT

OBJECTIVE@#To observe the effects of Guizhi Fuling Capsule (GZFLC) on myeloma cells and explore the mechanisms.@*METHODS@#MM1S and RPMI 8226 cells were co-cultured with different concentrations of serum and the cell experiments were divided into negative (10%, 20% and 40%) groups, GZFLC (10%, 20%, and 40%) groups and a control group. Cell counting kit-8 (CCK-8) assays and flow cytometry were used to detect the viability and apoptosis levels of myeloma cells. The effects on mitochondria were examined by reactive oxygen specie (ROS) and tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) assays. Western blot was used to detect the expression of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved caspase-3, -9, cytochrome C (Cytc) and apoptotic protease-activating factor 1 (Apaf-1). RPMI 8226 cells (2 × 107) were subcutaneously inoculated into 48 nude mice to study the in vivo antitumor effects of GZFLC. The mice were randomly divided into four groups using a completely randomized design, the high-, medium-, or low-dose GZFLC (840, 420, or 210 mg/kg per day, respectively) or an equal volume of distilled water, administered daily for 15 days. The tumor volume changes in and survival times of the mice in the GZFLC-administered groups and a control group were observed. Cytc and Apaf-1 expression levels were detected by immunohistochemistry.@*RESULTS@#GZFLC drug serum decreased the viability and increased the apoptosis of myeloam cells (P<0.05). In addition, this drug increased the ROS levels and decreased the mitochondrial membrane potential (P<0.01). Western blot showed that the Bcl-2/Bax ratios were decreased in the GZFLC drug serum-treated groups, whereas the expression levels of cleaved caspase-3, -9, Cytc and Apaf-1 were increased (all P<0.01). Over time, the myeloma tumor volumes of the mice in the GZFLC-administered groups decreased, and survival time of the mice in the GZFLC-administered groups were longer than that of the mice in the control group. Immunohistochemical analysis of tumor tissues from the mice in the GZFLC-administered groups revealed that the Cytc and Apaf-1 expression levels were increased (P<0.05).@*CONCLUSION@#GZFLC promoted apoptosis of myeloma cells through the mitochondrial apoptosis pathway and significantly reduced the tumor volumes in mice with myeloma, which prolonged the survival times of the mice.


Subject(s)
Mice , Animals , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Wolfiporia , Multiple Myeloma/drug therapy , bcl-2-Associated X Protein/metabolism , Mice, Nude , Apoptosis , Mitochondria/metabolism
6.
China Journal of Chinese Materia Medica ; (24): 2360-2367, 2023.
Article in Chinese | WPRIM | ID: wpr-981312

ABSTRACT

This study explored the effect and underlying mechanism of Stellera chamaejasme extract(SCE) on multidrug resistance of breast cancer. The chemotherapy-sensitive breast cancer cell line MCF-7 and adriamycin(ADR)-resistant cell line MCF-7/ADR were used as experimental subjects. MTT assay was used to detect cell proliferation activity. Pi staining was used to detect the cell cycle. 4',6-Diamidino-2-phenylindole, dihydrochloride(DAPI) staining and flow cytometry were used to detect apoptosis. Dansylcadaverine(MDC) staining and GFP-LC3B-Mcherry adenovirus transfection were used to detect autophagy. The protein expression of Bcl-2, Bax, caspase-9, caspase-3, LC3B, p62, and Beclin-1 was detected by Western blot. The results showed that SCE could significantly inhibit the proliferation of both sensitive and resistant breast cancer cell lines. The drug resistance factor was 0.53, which was significantly lower than 59 of ADR. Meanwhile, the proportion of sensitive/resistant cells in the G_0/G_1 phase increased significantly after SCE treatment. In addition, DAPI staining showed that a series of apoptosis phenomena such as nuclear pyknosis, staining deepening, and nuclear fragmentation appeared in sensitive/resistant cell lines after SCE administration. Moreover, the results of flow cytometry double staining showed that the proportion of apoptotic cells in sensitive/resistant cell lines increased significantly after SCE administration. Besides, Western blot showed that the protein expression levels of caspase-3, caspase-9, and Bcl-2 significantly decreased and the expression level of Bax protein significantly increased in both breast cancer cell lines after SCE administration. Furthermore, SCE could also increase the positive fluorescent spots after MDC staining and yellow fluorescent spots after GFP-LC3B-mcherry transfection, and up-regulate the expression levels of autophagy-related proteins LC3B-Ⅱ, p62, and Beclin-1 in breast cancer cells. In summary, SCE may play the role of anti-multidrug resistance by blocking the cell cycle of breast cancer multidrug-resistant cells, blocking autophagy flow, and ultimately interfering with the apoptosis resistance of drug-resistant cells.


Subject(s)
Humans , Female , Breast Neoplasms/metabolism , MCF-7 Cells , Caspase 3/metabolism , Caspase 9/metabolism , Beclin-1/pharmacology , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Cell Proliferation
7.
Acta cir. bras ; 38: e381723, 2023. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429536

ABSTRACT

Purpose: The effects of hesperidin application on the wound caused by esophageal burns were investigated in this study. Methods: Wistar albino rats were divided into three groups: Control group: only 1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn group: An alkaline esophageal burn model was created with 0.2 mL of 25% NaOH orally by gavage­1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn+Hesperidin group: 1 mL of 50 mL/kg of hesperidin was given i.p. for 28 days to rats after burn injury. Blood samples were collected for biochemical analysis. Esophagus samples were processed for histochemical staining and immunohistochemistry. Results: Malondialdehyde (MDA) and myeloperoxidase (MPO) levels were significantly increased in Burn group. Glutathione (GSH) content and histological scores of epithelialization, collagen formation, neovascularization was decreased. After hesperidin treatment, these values were significantly improved in the Burn+Hesperidin group. In the Burn group, epithelial cells and muscular layers were degenerated. Hesperidin treatment restored these pathologies in Burn+Hesperidin group. Ki-67 and caspase-3 expressions were mainly negative in control group; however, the expression was increased in the Burn group. In the Burn+Hesperidin group, Ki-67 and caspase-3 immune activities were reduced. Conclusion: Hesperidin dosage and application methods can be developed as an alternative treatment for burn healing and treatment.


Subject(s)
Wound Healing/drug effects , Apoptosis , Ki-67 Antigen , Esophagus/injuries , Caspase 3 , Hesperidin/administration & dosage , Burns
8.
Chinese Journal of Oncology ; (12): 471-481, 2023.
Article in Chinese | WPRIM | ID: wpr-984746

ABSTRACT

Objective: To investigate the effects of lncRNA DRAIC on proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells and its mechanism. Methods: Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of DRAIC in lung cancer tissues and corresponding adjacent normal tissues of 40 patients with lung adenocarcinoma who underwent surgery in Tangshan People's Hospital from 2019 to 2020. Lung adenocarcinoma cells A549 and H1299 were cultured in vitro and divided into si-NC group, si-DRAIC group, miR-NC group, let-7i-5p mimics group, si-DRAIC+ inhibitor-NC group, and si-DRAIC+ let-7i-5p inhibitor group. CCK-8 method and clone formation experiment were used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Transwell array was used to detect the cell migration and invasion. Western blot was used to detect the protein expressions of Caspase-3, Caspase-9, Bcl-2 and Bax. The double luciferase reporter gene experiment was used to verify the regulatory relationship between DRAIC and let-7i-5p. Independent sample t test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Pearson correlation analysis was used for correlation analysis. Results: Compared with adjacent tissues, the expression level of DRAIC in lung adenocarcinoma tissues increased (P<0.05), but the expression level of let-7i-5p decreased (P<0.05). The expression levels of DRAIC and let-7i-5p in lung adenocarcinoma tissues were negatively correlated (r=-0.737, P<0.05). The absorbance value of A549 and H1299 cells in the si-DRAIC group at 48, 72 and 96 hours were lower than those in the si-NC group (P<0.05), the number of clones formed [(91.00±6.08 vs. 136.67±6.51); (50.67±1.53 vs. 76.67±4.51)], the number of migration [(606.67±31.34 vs. 960.00±33.06); (483.33±45.96 vs. 741.67±29.67)], the number of invasion [(185.00±8.19 vs. 447.33±22.05); (365.00±33.87 vs. 688.00±32.97)] were lower than those in the si-NC group (P<0.05). However, the apoptosis rates of cells [(13.43±2.79)% vs. (4.53±0.42)%; (23.77±1.04)% vs. (6.60±1.42)%] were higher than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC group were higher than those in si-NC group, and the protein expression of Bcl-2 was lower than that in si-NC group (P<0.05). DRAIC is located in the cytoplasm. DRAIC targeted and negatively regulated the expression of let-7i-5p. The absorbance values of A549 and H1299 cells in the let-7i-5p mimics group at 48, 72 and 96 hours were lower than those in the miR-NC group (P<0.05), the number of clones formed [(131.33±14.47 vs. 171.33±6.11); (59.33±4.93 vs. 80.33±7.09)], the number of migration [(137.67±3.06 vs. 579.33±82.03); (425.00±11.14 vs. 669.33±21.13)], the number of invasion [(54.00±4.36 vs. 112.67±11.59); (80.00±4.58 vs. 333.33±16.80)] were lower than those in the miR-NC group (P<0.05). However, the apoptosis rates of cells [(14.57±1.10)% vs. (6.97±1.11)%; (23.97±0.42)% vs. (7.07±1.21)%] were higher than those in the miR-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in let-7i-5p mimics group were higher than those in miR-NC group, and the protein expression of Bcl-2 was lower than that in miR-NC group (P<0.05). The absorbance values of A549 and H1299 cells in the si-DRAIC+ let-7i-5p inhibitor group at 48, 72 and 96 hours were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05), the number of clones formed [(82.00±5.29 vs. 59.00±5.57); (77.67±4.93 vs. 41.33±7.57)], the number of migration [(774.33±35.81 vs. 455.67±19.04); (569.67±18.72 vs. 433.67±16.77)], the number of invasion [(670.33±17.21 vs. 451.00±17.52); (263.67±3.06 vs. 182.33±11.93)] were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05). However, the apoptosis rates of cells [(7.73±0.45)% vs. (19.13±1.50)%; (8.00±0.53)% vs. (28.40±0.53)%] were lower than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC+ let-7i-5p inhibitor group were higher than those in si-DRAIC+ inhibitor-NC group, and the protein expression of Bcl-2 was lower than that in si-DRAIC+ inhibitor-NC group (P<0.05). Conclusion: DRAIC is highly expressed in lung adenocarcinoma, and DRAIC promotes the proliferation, migration and invasion of lung adenocarcinoma cells and inhibits apoptosis by targeting let-7i-5p.


Subject(s)
Humans , Adenocarcinoma/genetics , Apoptosis/genetics , bcl-2-Associated X Protein/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Lung/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
9.
Acta cir. bras ; 38: e381523, 2023. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1439109

ABSTRACT

Purpose: It was aimed to investigate the biochemical and immunohistochemical effects of ephedrine (EPH) in bilateral ovariectomized rats. Methods: Twenty-four Sprague Dawley female rats were divided into three groups: control group: The abdomen was opened and closed without any treatment; ischemia-reperfusion (IR) group: 2 h of ischemia followed by 2 h of reperfusion were allowed to cause IR injury; IR+EPH group: oral EPH solution (5 mg/kg) was administered for 28 days. Results: Biochemical parameters were statistically significant in group comparisons. Increased interleukin-6 (IL-6) expression, degenerative preantral and antral follicle cells and inflammatory cells around blood vessels were seen in IR group. Negative IL-6 expression was observed in seminal epithelial cells, preantral and antral follicle cells in IR+EPH group. While caspase-3 activity increased in granulosa cells and stromal cells in IR group, caspase-3 expression was negative in preantral and antral follicle cells in the germinal epithelium and cortex in IR+EPH group. Conclusion: The effect of apoptosis, which occurs with the signaling that starts in the cell nucleus, caused the cessation of the stimulating effect at the nuclear level after EPH administration, and a decrease in the antioxidative effect in IR damage and inflammation in the apoptotic process.


Subject(s)
Animals , Female , Rats , Ovary/cytology , Interleukin-6/physiology , Ephedrine/analysis , Caspase 3/physiology , Immunohistochemistry , Rats, Sprague-Dawley , Apoptosis
10.
Journal of Southern Medical University ; (12): 537-543, 2023.
Article in Chinese | WPRIM | ID: wpr-986959

ABSTRACT

OBJECTIVE@#To investigate the expression of microRNA miR-431-5p in gastric cancer (GC) tissues and its effects on apoptosis and mitochondrial function in GC cells.@*METHODS@#The expression level of miR-431-5p in 50 clinical samples of GC tissues and paired adjacent tissues was detected using real-time fluorescence quantitative PCR, and its correlation with the clinicopathological features of the patients was analyzed. A cultured human GC cell line (MKN-45 cells) were transfected with a miR-431-5p mimic or a negative control sequence, and the cell proliferation, apoptosis, mitochondrial number, mitochondrial potential, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production and adenosine triphosphate (ATP) content were detected using CCK-8 assay, flow cytometry, fluorescent probe label, or ATP detection kit. The changes in the expression levels of the apoptotic proteins in the cells were detected with Western blotting.@*RESULTS@#The expression level of miR-431-5p was significantly lower in GC tissues than in the adjacent tissues (P < 0.001) and was significantly correlated with tumor differentiation (P=0.0227), T stage (P=0.0184), N stage (P=0.0005), TNM stage (P=0.0414) and vascular invasion (P=0.0107). In MKN-45 cells, overexpression of miR-431-5p obviously inhibited cell proliferation and induced cell apoptosis, causing also mitochondrial function impairment as shown by reduced mitochondrial number, lowered mitochondrial potential, increased mPTP opening, increased ROS production and reduced ATP content. Overexpression of miR-431-5p significantly downregulated the expression of Bcl-2 and increased the expressions of pro-apoptotic proteins p53, Bcl-2 and cleaved caspase-3 protein.@*CONCLUSION@#The expression of miR-431-5p is down-regulated in GC, which results in mitochondrial function impairment and promotes cell apoptosis by activating the Bax/Bcl-2/caspase3 signaling pathway, suggesting the potential role of miR-431-5p in targeted therapy for GC.


Subject(s)
Humans , Apoptosis/genetics , bcl-2-Associated X Protein , Caspase 3 , Cell Line, Tumor , Cell Proliferation/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondrial Permeability Transition Pore , Reactive Oxygen Species , Stomach Neoplasms/pathology
11.
Chinese Journal of Hepatology ; (12): 594-600, 2023.
Article in Chinese | WPRIM | ID: wpr-986176

ABSTRACT

Objective: To investigate the role of Maresin1 (MaR1) in hepatic ischemia-reperfusion injury (HIRI). Methods: The HIRI model was established and randomly divided into a sham operation group (Sham group), an ischemia-reperfusion group (IR group), and a MaR1 ischemia-reperfusion group (MaR1+IR group). MaR1 80ng was intravenously injected into each mouse's tail veins 0.5h before anesthesia. The left and middle hepatic lobe arteries and portal veins were opened and clamped. The blood supply was restored after 1h of ischemia. After 6h of reperfusion, the mice were sacrificed to collect blood and liver tissue samples. The Sham's group abdominal wall was only opened and closed. RAW267.4 macrophages were administered with MaR1 50ng/ml 0.5h before hypoxia, followed by hypoxia for 8h and reoxygenation for 2h, and were divided into the control group, the hypoxia-reoxygenation group (HR group), the MaR1 hypoxia-reoxygenation group (MaR1 + HR group), the Z-DEVD-FMK hypoxia-reoxygenation group (HR+Z group), the MaR1 + Z-DEVD-FMK hypoxia-reoxygenation group (MaR1 + HR + Z group), and the Con group without any treatment. Cells and the supernatant above them were collected. One-way analysis of variance was used for inter-group comparisons, and the LSD-t test was used for pairwise comparisons. Results: Compared with the Sham group, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, and IL-18 in the IR group were significantly higher (P < 0.05), with remarkable pathological changes, while the level in the MaR1 + IR group was lower than before (P < 0.05), and the pathological changes were alleviated. Compared with the Con group, the HR group had higher levels of IL-1β and IL-18 (P < 0.05), while the MaR1 + HR group had lower levels of IL-1β and IL-18 (P < 0.05). Western blot showed that the expressions of caspase-3, GSDME, and GSDME-N were significantly higher in the HR group and IR group than in the other groups; however, the expression was lower following MaR1 pretreatment. The Z-DEVD-FMK exploration mechanism was inhibited by the expression of caspase-3 in HIRI when using MaR1. Compared with the HR group, the IL-1β and IL-18 levels and the expressions of caspase-3, GSDME, and GSDME-N in the HR + Z group were decreased (P < 0.05), while the expression of nuclear factor κB was increased, but following MaR1 pretreatment, nuclear factor κB was decreased. There was no significant difference in the results between the MaR1 + H/R group and the MaR1 + H/R + Z group (P > 0.05). Conclusion: MaR1 alleviates HIRI by inhibiting NF-κB activation and caspase-3/GSDME-mediated inflammatory responses.


Subject(s)
Mice , Animals , NF-kappa B/metabolism , Interleukin-18/metabolism , Caspase 3/metabolism , Liver/pathology , Signal Transduction , Reperfusion Injury/metabolism
12.
China Journal of Chinese Materia Medica ; (24): 736-743, 2023.
Article in Chinese | WPRIM | ID: wpr-970543

ABSTRACT

This study aims to investigate the effect of Astragali Radix-Curcumae Rhizoma(AC) combination on the proliferation, migration, and invasion of colon cancer HT-29 cells based on epithelial-mesenchymal transition(EMT). HT-29 cells were respectively treated with 0, 3, 6 and 12 g·kg~(-1) AC-containing serum for 48 h. The survival and growth of cells were measured by thiazole blue(MTT) colorimetry, and the proliferation, migration, and invasion of cells were detected by 5-ethynyl-2'-deoxyuridine(EdU) test and Transwell assay. Cell apoptosis was examined by flow cytometry. The BALB/c nude mouse model of subcutaneous colon cancer xenograft was established, and then model mice were classified into blank control group, 6 g·kg~(-1) AC group, and 12 g·kg~(-1) AC group. The tumor weight and volume of mice were recorded, and the histopathological morphology of the tumor was observed based on hematoxylin-eosin(HE) staining. The expression of apoptosis-associated proteins B-cell lymphoma-2-associated X protein(Bax), cysteine-aspartic acid protease-3(caspase-3), and cleaved caspase-3, and EMT-associated proteins E-cadherin, MMP9, MMP2 and vimentin in HT-29 cells and mouse tumor tissues after the treatment of AC was determined by Western blot. The results showed that cell survival rate and the number of cells at proliferation stage decreased compared with those in the blank control group. The number of migrating and invading cells reduced and the number of apoptotic cells increased in the administration groups compared with those in the blank control group. As for the in vivo experiment, compared with the blank control group, the administration groups had small tumors with low mass and shrinkage of cells and karyopycnosis in the tumor tissue, indicating that the AC combination may improve EMT. In addition, the expression of Bcl2 and E-cadherin increased and the expression of Bax, caspase-3, cleaved caspase-3, MMP9, MMP2, and vimentin decreased in HT-29 cells and tumor tissues in each administration group. In summary, the AC combination can significantly inhibit the proliferation, invasion, migration, and EMT of HT-29 cells in vivo and in vitro and promote the apoptosis of colon cancer cells.


Subject(s)
Humans , Animals , Mice , Caspase 3 , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Vimentin , HT29 Cells , bcl-2-Associated X Protein , Colonic Neoplasms , Cell Proliferation
13.
China Journal of Chinese Materia Medica ; (24): 455-464, 2023.
Article in Chinese | WPRIM | ID: wpr-970482

ABSTRACT

This study explores the effect of total flavonoids of Rhododendra simsii(TFR) on middle cerebral artery occlusion(MCAO)-induced cerebral injury in rats and oxygen-glucose deprivation/reoxygenation(OGD/R) injury in PC12 cells and the underlying mechanism. The MCAO method was used to induce focal ischemic cerebral injury in rats. Male SD rats were randomized into sham group, model group, and TFR group. After MCAO, TFR(60 mg·kg~(-1)) was administered for 3 days. The content of tumor necrosis factor-α(TNF-α), interleukin-1(IL-1), and interleukin-6(IL-6) in serum was detected by enzyme-linked immunosorbent assay(ELISA). The pathological changes of brain tissue and cerebral infarction were observed based on hematoxylin and eosin(HE) staining and 2,3,5-triphenyltetrazolium chloride(TTC) staining. RT-qPCR and Western blot were used to detect the mRNA and protein levels of calcium release-activated calcium channel modulator 1(ORAI1), stromal interaction molecule 1(STIM1), stromal intera-ction molecule 2(STIM2), protein kinase B(PKB), and cysteinyl aspartate specific proteinase 3(caspase-3) in brain tissues. The OGD/R method was employed to induce injury in PC12 cells. Cells were randomized into the normal group, model group, gene silencing group, TFR(30 μg·mL~(-1)) group, and TFR(30 μg·mL~(-1))+gene overexpression plasmid group. Intracellular Ca~(2+) concentration and apoptosis rate of PC12 cells were measured by laser scanning confocal microscopy and flow cytometry. The effect of STIM-ORAI-regulated store-operated calcium entry(SOCE) pathway on TFR was explored based on gene silencing and gene overexpression techniques. The results showed that TFR significantly alleviated the histopathological damage of brains in MCAO rats after 3 days of admini-stration, reduced the contents of TNF-α, IL-1, and IL-6 in the serum, down-regulated the expression of ORAI1, STIM1, STIM2, and caspase-3 genes, and up-regulated the expression of PKB gene in brain tissues of MCAO rats. TFR significantly decreased OGD/R induced Ca~(2+) overload and apoptosis in PC12 cells. However, it induced TFR-like effect by ORAI1, STIM1 and STIM2 genes silencing. However, overexpression of these genes significantly blocked the effect of TFR in reducing Ca~(2+) overload and apoptosis in PC12 cells. In summary, in the early stage of focal cerebral ischemia-reperfusion injury and OGD/R-induced injury in PC12 cells TFR attenuates ischemic brain injury by inhibiting the STIM-ORAI-regulated SOCE pathway and reducing Ca~(2+) overload and inflammatory factor expression, and apoptosis.


Subject(s)
Animals , Male , Rats , Apoptosis , Brain Ischemia/metabolism , Caspase 3 , Interleukin-1 , Interleukin-6 , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha/genetics , Flavonoids/pharmacology , Rhododendron/chemistry
14.
Chinese Journal of Oncology ; (12): 230-237, 2023.
Article in Chinese | WPRIM | ID: wpr-969829

ABSTRACT

Objective: To explore the effect of lncRNA ADPGK-AS1 on the proliferation and apoptosis of retinoblastoma cells and its possible mechanism. Methods: The tumor tissues of 31 patients with retinoblastoma admitted to Henan Provincial Eye Hospital from February to June 2020 and their corresponding normal tissues adjacent to the cancer were collected. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p in retinoblastoma tissues and normal adjacent tissues were detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Human retinal epithelial cell ARPE-19, human retinoblastoma cell Y-79 and WERI-Rb-1 were cultured in vitro. The expression levels of lncRNA ADPGK-AS1 and miR-200b-5p were detected by qRT-PCR. Y-79 cells were randomly divided into si-con group, si-lncRNA ADPGK-AS1 group, miR con group, miR-200b-5p group, si-lncRNA ADPGK-AS1+ anti-miR con group, and si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group. The proliferation, cloning and apoptosis of cells in each group were detected by tetramethylazol blue method, plate cloning test and flow cytometry, respectively. The targeting relationship between lncRNA ADPGK-AS1 and miR-200b-5p was detected by double luciferase report test, and the expression level of cleaved-caspase-3 protein was detected by western blot. Results: Compared with the adjacent tissues, the expression of lncRNA ADPGK-AS1 in retinoblastoma tissues was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with ARPE-19 cells, the expression of lncRNA ADPGK-AS1 in Y-79 and WERI-Rb-1 cells was increased (P<0.05), while the expression of miR-200b-5p was decreased (P<0.05). Compared with the si-con group, the cell viability of the si-lncRNA ADPGK-AS1 group was reduced (1.06±0.09 vs 0.53±0.05, P<0.05), the number of cell clone formation was reduced (114.00±8.03 vs 57.00±4.13, P<0.05), while the apoptosis rate [(7.93±0.68)% vs (25.43±1.94)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). Compared with the miR-con group, the cell viability of the miR-200b-5p group was decreased (1.05±0.08 vs 0.57±0.05, P<0.05), the number of cell clone formation was decreased (118.00±10.02 vs 64.00±5.13, P<0.05), while the apoptosis rate [(7.89±0.71)% vs (23.15±1.62)%] and the protein level of cleaved-caspase-3 were increased (P<0.05). lncRNA ADPGK-AS1 could target the expression of miR-200b-5p. Compared with the si-lncRNA ADPGK-AS1+ anti-miR-con group, cell viability of the si-lncRNA ADPGK-AS1+ anti-miR-200b-5p group was increased (0.53±0.04 vs 1.25±0.10, P<0.05), and the number of cell clones was increased (54.00±4.39 vs 125.00±10.03, P<0.05), while the rate of apoptosis [(25.38±1.53)% vs (9.76±0.71)%] and the protein level of cleaved-caspase-3 were decreased (P<0.05). Conclusion: Interfering with the expression of lncRNA ADPGK-AS1 could inhibit the proliferation and clone formation and induce apoptosis of retinoblastoma cells by targeting the expression of miR-200b-5p.


Subject(s)
Humans , MicroRNAs/metabolism , Retinoblastoma/pathology , Caspase 3/metabolism , RNA, Long Noncoding/metabolism , Antagomirs/pharmacology , Cell Proliferation , Cell Line, Tumor , Apoptosis/genetics , Retinal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics
15.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 279-291, 2023.
Article in English | WPRIM | ID: wpr-982699

ABSTRACT

Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.


Subject(s)
Cadmium/metabolism , Caspase 3/metabolism , Potentilla/metabolism , Glycogen Synthase Kinase 3 beta/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cytochromes c/metabolism , Glutathione Disulfide/pharmacology , Oxidative Stress , Myocytes, Cardiac , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Apoptosis , Polysaccharides/pharmacology , Adenosine Triphosphate/metabolism
16.
Chinese Critical Care Medicine ; (12): 627-632, 2023.
Article in Chinese | WPRIM | ID: wpr-982644

ABSTRACT

OBJECTIVE@#To investigate the effects of tanshinone IIA on apoptosis and autophagy induced by hypoxia/reoxygenation in H9C2 cardiomyocytes and its mechanism.@*METHODS@#H9C2 cardiomyocytes in logarithmic growth phase were divided into control group, hypoxia/reoxygenation model group and tanshinone IIA low-dose, medium-dose and high-dose groups (50, 100, 200 mg/L tanshinone IIA were treated after hypoxia/reoxygenation respectively). The dose with good therapeutic effect was selected for follow-up study. The cells were divided into control group, hypoxia/reoxygenation model group, tanshinone IIA+pcDNA3.1-NC group and tanshinone IIA+pcDNA3.1-ABCE1 group. The cells were transfected with the overexpressed plasmids pcDNA3.1-ABCE1 and pcDNA3.1-NC and then treated accordingly. Cell counting kit-8 (CCK-8) was used to detect H9C2 cell activity in each group. The apoptosis rate of cardiomyocytes was detected by flow cytometry. The ATP-binding cassette transporter E1 (ABCE1), apoptosis-related proteins Bcl-2 and Bax, caspase-3, autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3II/I) and p62 mRNA expression level of H9C2 cells in each group were detected by real-time fluorescence quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The protein expression levels of the above indexes in H9C2 cells were detected by Western blotting.@*RESULTS@#(1) Cell activity and ABCE1 expression: tanshinone IIA inhibited the activity of H9C2 cells induced by hypoxia/reoxygenation, and the effect was significant at medium-dose [(0.95±0.05)% vs. (0.37±0.10)%, P < 0.01], mRNA and protein expression of ABCE1 were significantly reduced [ABCE1 mRNA (2-ΔΔCt): 2.02±0.13 vs. 3.74±0.17, ABCE1 protein (ABCE1/GAPDH): 0.46±0.04 vs. 0.68±0.07, both P < 0.05]. (2) Expression of apoptosis-related proteins: medium-dose of tanshinone IIA inhibited the apoptosis of H9C2 cells induced by hypoxia/reoxygenation [apoptosis rate: (28.26±2.52)% vs. (45.27±3.07)%, P < 0.05]. Compared with the hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated the protein expression of Bax and caspase-3 in H9C2 cells induced by hypoxia/reoxygenation, and significantly up-regulated the protein expression of Bcl-2 [Bax (Bax/GAPDH): 0.28±0.03 vs. 0.47±0.03, caspase-3 (caspase-3/GAPDH): 0.31±0.02 vs. 0.44±0.03, Bcl-2 (Bcl-2/GAPDH): 0.53±0.02 vs. 0.37±0.05, all P < 0.05]. (3) Expression of autophagy-related proteins: compared with the control group, the positive rate of LC3 in the hypoxia/reoxygenation model group was significantly increased, while the positive rate of LC3 in the medium-dose of tanshinone IIA group was significantly decreased [(20.67±3.09)% vs. (42.67±3.86)%, P < 0.01]. Compared with hypoxia/reoxygenation model group, medium-dose of tanshinone IIA significantly down-regulated Beclin-1, LC3II/I and p62 protein expressions [Beclin-1 (Beclin-1/GAPDH): 0.27±0.05 vs. 0.47±0.03, LC3II/I ratio: 0.24±0.05 vs. 0.47±0.04, p62 (p62/GAPDH): 0.21±0.03 vs. 0.48±0.02, all P < 0.05]. (4) Expression of apoptosis and autophagy related proteins after transfection with overexpressed ABCE1 plasmid: compared with tanshinone IIA+pcDNA3.1-NC group, the protein expression levels of Bax, caspase-3, Beclin-1, LC3II/I and p62 in tanshinone IIA+pcDNA3.1-ABCE1 group were significantly up-regulated, while the protein expression level of Bcl-2 was significantly down-regulated.@*CONCLUSIONS@#100 mg/L tanshinone IIA could inhibit autophagy and apoptosis of cardiomyocytes by regulating the expression level of ABCE1. So, it protects H9C2 cardiomyocytes injury induced by hypoxia/reoxygenation.


Subject(s)
Humans , Apoptosis , ATP-Binding Cassette Transporters/metabolism , Autophagy , bcl-2-Associated X Protein/metabolism , Beclin-1/metabolism , Caspase 3/metabolism , Follow-Up Studies , Myocytes, Cardiac , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , Cell Hypoxia
17.
Chinese Critical Care Medicine ; (12): 393-397, 2023.
Article in Chinese | WPRIM | ID: wpr-982600

ABSTRACT

OBJECTIVE@#To evaluate the effect of curcumin on renal mitochondrial oxidative stress, nuclear factor-κB/NOD-like receptor protein 3 (NF-κB/NLRP3) inflammatory body signaling pathway and tissue cell injury in rats with acute respiratory distress syndrome (ARDS).@*METHODS@#A total of 24 specific pathogen free (SPF)-grade healthy male Sprague-Dawley (SD) rats were randomly divided into control group, ARDS model group, and low-dose and high-dose curcumin groups, with 6 rats in each group. The ARDS rat model was reproduced by intratracheal administration of lipopolysaccharide (LPS) at 4 mg/kg via aerosol inhalation. The control group was given 2 mL/kg of normal saline. The low-dose and high-dose curcumin groups were administered 100 mg/kg or 200 mg/kg curcumin by gavage 24 hours after model reproduction, once a day. The control group and ARDS model group were given an equivalent amount of normal saline. After 7 days, blood samples were collected from the inferior vena cava, and the levels of neutrophil gelatinase-associated lipocalin (NGAL) in serum were determined by enzyme-linked immunosorbent assay (ELISA). The rats were sacrificed, and kidney tissues were collected. Reactive oxygen species (ROS) levels were determined by ELISA, superoxide dismutase (SOD) activity was detected using the xanthine oxidase method, and malondialdehyde (MDA) levels were determined by colorimetric method. The protein expressions of hypoxia-inducible factor-1α (HIF-1α), caspase-3, NF-κB p65, and Toll-like receptor 4 (TLR4) were detected by Western blotting. The mRNA expressions of HIF-1α, NLRP3, and interleukin-1β (IL-1β) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Renal cell apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL). The morphological changes in renal tubular epithelial cells and mitochondria were observed under a transmission electron microscope.@*RESULTS@#Compared with the control group, the ARDS model group exhibited kidney oxidative stress and inflammatory response, significantly elevated serum levels of kidney injury biomarker NGAL, activated NF-κB/NLRP3 inflammasome signaling pathway, increased kidney tissue cell apoptosis rate, and renal tubular epithelial cell damage and mitochondrial integrity destruction under transmission electron microscopy, indicating successful induction of kidney injury. Following curcumin intervention, the injury to renal tubular epithelial cells and mitochondria in the rats was significantly mitigated, along with a noticeable reduction in oxidative stress, inhibition of the NF-κB/NLRP3 inflammasome signaling pathway, and a significant decrease in kidney tissue cell apoptosis rate, demonstrating a certain dose-dependency. Compared with the ARDS model group, the high-dose curcumin group exhibited significantly reduced serum NGAL levels and kidney tissue MDA and ROS levels [NGAL (μg/L): 13.8±1.7 vs. 29.6±2.7, MDA (nmol/g): 115±18 vs. 300±47, ROS (kU/L): 75±19 vs. 260±15, all P < 0.05], significantly down-regulated protein expressions of HIF-1α, caspase-3, NF-κB p65, and TLR4 in the kidney tissue [HIF-1α protein (HIF-1α/β-actin): 0.515±0.064 vs. 0.888±0.055, caspase-3 protein (caspase-3/β-actin): 0.549±0.105 vs. 0.958±0.054, NF-κB p65 protein (NF-κB p65/β-actin): 0.428±0.166 vs. 0.900±0.059, TLR4 protein (TLR4/β-actin): 0.683±0.048 vs. 1.093±0.097, all P < 0.05], and significantly down-regulated mRNA expressions of HIF-1α, NLRP3, and IL-1β [HIF-1α mRNA (2-ΔΔCt): 2.90±0.39 vs. 9.49±1.87, NLRP3 mRNA (2-ΔΔCt): 2.07±0.21 vs. 6.13±1.32, IL-1β mRNA (2-ΔΔCt): 1.43±0.24 vs. 3.95±0.51, all P < 0.05], and significantly decreased kidney tissue cell apoptosis rate [(4.36±0.92)% vs. (27.75±8.31)%, P < 0.05], and significantly increased SOD activity (kU/g: 648±34 vs. 430±47, P < 0.05).@*CONCLUSIONS@#Curcumin can alleviate kidney injury in ARDS rats, and its mechanism may be related to the increasing in SOD activity, reduction of oxidative stress, and inhibition of the activation of the NF-κB/NLRP3 inflammasome signaling pathway.


Subject(s)
Male , Rats , Animals , Rats, Sprague-Dawley , NF-kappa B , Actins , Caspase 3 , Curcumin , Lipocalin-2 , Toll-Like Receptor 4 , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Saline Solution , Kidney , Superoxide Dismutase
18.
Journal of Experimental Hematology ; (6): 739-745, 2023.
Article in Chinese | WPRIM | ID: wpr-982124

ABSTRACT

OBJECTIVE@#To investigate the effect of MELK inhibitor OTSSP167 against diffuse large B-cell lymphoma (DLBCL).@*METHODS@#The effect of OTSSP167 on activity, proliferation, and apoptosis of DLBCL cell line (SUDHL2 and HBL1) was detected by CCK-8 assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, and Annexin V-FITC/PI double staining, respectively. DLBCL cells were inoculated into nude mice, after 4 weeks of OTSSP167 treatment, the effect of OTSSP167 on DLBCL growth in vivo was detected. Caspase-GloTM 3/7 enzyme activity assay kit was used to detect the effect of OTSSP167 on Caspase 3/7 enzyme activity of DLBCL cells. The expression levels of apoptosis and cycle-related proteins were detected by Western blot.@*RESULTS@#OTSSP167 significantly inhibited the activity of SUDHL2 and HBL1 cells in a dose-dependent manner (r =-0.61, r =-0.52). EdU staining showed that OTSSP167 could significantly inhibit the proliferation of SUDHL2 and HBL1 cells. Annexin V-FITC/PI result showed that OTSSP167 could significantly promote the apoptosis of SUDHL2 and HBL1 cells (P <0.001). The result of in vivo experiment showed that OTSSP167 could inhibit the growth of SUDHL2 cells in nude mice. The result of TUNEL staining of tumor further confirmed that OTSSP167 could promote the apoptosis of SUDHL2 cells. Caspase 3/7 enzyme activity test demonstrated that OTSSP167 could significantly increase caspase activity in SUDHL2 and HBL1 cells (r =0.98, r =0.87). Western blot showed that OTSSP167 could dose-dependently inhibit the expression of PARP, Bcl-xL, and Bcl-2 in apoptosis signaling pathway (r =-0.93, r =-0.66, r =-0.87), while p53 protein was significantly up-regulated (r =0.82). The expression of cell cycle-related proteins cdc2, Cyclin E1, Cyclin A2, and Cyclin B1 also showed a dose-dependent down-regulation (r =-0.89, r =-0.83, r =-0.61, r =-0.93).@*CONCLUSION@#The MELK inhibitor OTSSP167 can inhibit the proliferation and promote the apoptosis of DLBCL cells by inhibiting the expression of cycle-related proteins and anti-apoptosis-related proteins.


Subject(s)
Mice , Animals , Mice, Nude , Cell Line, Tumor , Cell Proliferation , Caspase 3 , Apoptosis Regulatory Proteins , Caspases , Lymphoma, Large B-Cell, Diffuse/pathology
19.
Journal of Experimental Hematology ; (6): 344-351, 2023.
Article in Chinese | WPRIM | ID: wpr-982065

ABSTRACT

OBJECTIVE@#To explore the effect of abnormal miRNA expression on the proliferation of pediatric acute lymphoblastic leukemia (ALL) cells and its related mechanism.@*METHODS@#15 children with ALL and 15 healthy subjects were collected from the Second Affiliated Hospital of Hainan Medical University from July 2018 to March 2021. MiRNA sequencing was performed on their bone marrow cells, and validated using qRT-PCR. MiR-1294 and miR-1294-inhibitory molecule (miR-1294-inhibitor) were transfected into Nalm-6 cells, and the proliferation of Nalm-6 cells was detected by CCK-8 and colony formation assays. Western blot and ELISA were used to detect apoptosis of Nalm-6 cells. Biological prediction of miR-1294 was performed to find the target gene, which was verified by luciferase reporter assay. Si-SOX15 was transfected into Nalm-6 cells, Western blot was used to detect the expression of Wnt signaling pathway-related proteins and to verify the effect of si-SOX15 on the proliferation and apoptosis of Nalm-6 cells.@*RESULTS@#Compared with healthy subjects, 22 miRNAs were significantly upregulated in bone marrow cells of ALL patients, of which miR-1294 was the most significantly upregulated. In addition, the expression level of SOX15 gene was significantly reduced in bone marrow cells of ALL patients. Compared with the NC group, the miR-1294 group showed increased protein expression levels of Wnt3a and β-catenin, faster cell proliferation, and more colony-forming units, while caspase-3 protein expression level and cell apoptosis were reduced. Compared with the NC group, the miR-1294-inhibitor group showed reduced protein expression levels of Wnt3a and β-catenin, slower cell proliferation, and fewer colony-forming units, while caspase-3 protein expression level was increased and apoptosis rate was elevated. miR-1294 had a complementary base-pair with the 3'UTR region of SOX15 , and miR-1294 directly targeted SOX15 . The expression of miR-1294 was negatively correlated with SOX15 in ALL cells. Compared with the si-NC group, the si-SOX15 group showed increased protein expression levels of Wnt3a and β-catenin, accelerated cell proliferation, and decreased caspase-3 protein expression level and cell apoptosis rate.@*CONCLUSION@#MiR-1294 can target and inhibit SOX15 expression, thus activating the Wnt/β-Catenin signaling pathway to promote the proliferation of ALL cells, inhibit cell apoptosis, and ultimately affect the disease progression.


Subject(s)
Humans , Child , beta Catenin/genetics , Wnt Signaling Pathway , Caspase 3/metabolism , Cell Line, Tumor , MicroRNAs/genetics , Cell Proliferation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Apoptosis , SOX Transcription Factors/metabolism
20.
Chinese Journal of Cellular and Molecular Immunology ; (12): 626-632, 2023.
Article in Chinese | WPRIM | ID: wpr-981909

ABSTRACT

Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.


Subject(s)
Humans , Beclin-1/metabolism , Caspase 3/metabolism , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Apoptosis , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress , Autophagy , Mesenchymal Stem Cells/metabolism , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL